Neural Conditional Gradients
نویسندگان
چکیده
The move from hand-designed to learned optimizers in machine learning has been quite successful for gradient-based and -free optimizers. When facing a constrained problem, however, maintaining feasibility typically requires a projection step, which might be computationally expensive and not differentiable. We show how the design of projection-free convex optimization algorithms can be cast as a learning problem based on FrankWolfe Networks: recurrent networks implementing the Frank-Wolfe algorithm aka. conditional gradients. This allows them to learn to exploit structure when, e.g., optimizing over rank-1 matrices. Our LSTM-learned optimizers outperform hand-designed as well learned but unconstrained ones. We demonstrate this for training support vector machines and softmax classifiers.
منابع مشابه
Model-based policy gradients with parameter-based exploration by least-squares conditional density estimation
The goal of reinforcement learning (RL) is to let an agent learn an optimal control policy in an unknown environment so that future expected rewards are maximized. The model-free RL approach directly learns the policy based on data samples. Although using many samples tends to improve the accuracy of policy learning, collecting a large number of samples is often expensive in practice. On the ot...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملUnified Depth Prediction and Intrinsic Image Decomposition from a Single Image via Joint Convolutional Neural Fields
We present a method for jointly predicting a depth map and intrinsic images from single-image input. The two tasks are formulated in a synergistic manner through a joint conditional random field (CRF) that is solved using a novel convolutional neural network (CNN) architecture, called the joint convolutional neural field (JCNF) model. Tailored to our joint estimation problem, JCNF differs from ...
متن کاملSufficient Dimension Reduction via Direct Estimation of the Gradients of Logarithmic Conditional Densities
Sufficient dimension reduction (SDR) is aimed at obtaining the low-rank projection matrix in the input space such that information about output data is maximally preserved. Among various approaches to SDR, a promising method is based on the eigendecomposition of the outer product of the gradient of the conditional density of output given input. In this letter, we propose a novel estimator of th...
متن کاملSURGE: Surface Regularized Geometry Estimation from a Single Image
This paper introduces an approach to regularize 2.5D surface normal and depth predictions at each pixel given a single input image. The approach infers and reasons about the underlying 3D planar surfaces depicted in the image to snap predicted normals and depths to inferred planar surfaces, all while maintaining fine detail within objects. Our approach comprises two components: (i) a fourstream...
متن کامل